

IBM Case Manager 5.2
Enablement

Using the Model API and REST API call in custom widgets for
IBM Case Manager V5.2

By: Mathew Sprehn and Johnson Liu

With special thanks to

Amisha Parikh
Tim Morgan
Anu Shenoy
Lauren Mayes

Table of Contents
1. Overview..3
2. Making REST Calls in IBM Case Manager V5.2 Custom Widgets...3
5. Using the JavaScript API Reference Documentation...6
6. Making Model API calls in IBM Case Manager 5.2...9
7. Passing the Model Object to other IBM Case Manager Widgets...10
8. Advantages of Model API over Rest API in IBM Case Manager V5.2......................................11

1. Overview

This article shows how to make REST API calls in a custom widget on IBM Case Manager 5.2
and to convert a REST API call to Model API call.

The IBM Case Manager JavaScript APIs, which include the Model API, extend the IBM Content
Navigator APIs. You can use the IBM Case Manager JavaScript APIs to extend IBM Content Navigator
API functionality and to call the Case Manager API. For detailed information about the Model API
calls, see IBM Case Manager JavaScript API Reference in the IBM Case Manager Version 5.2
Information Center. For information about the IBM Content Navigator API, see IBM Content
Navigator JavaScript API Reference in the IBM FileNet P8 Version 5.2 Information Center. This article
is a continuation of Tim Morgan's article Mapping Case REST API calls to Model API calls when
converting custom widgets to ICM 5.2, which can be found here.

We will briefly discuss using the REST APIs versus using the Model API in this article. In IBM
Case Manager V5.1.1, you used the REST APIs in custom widget development. In IBM Case Manager
V5.2, you are encouraged to use the new Model API in custom widgets. However, it is still possible to
develop using the REST API in V5.2. This article discusses the advantages of using Model API calls
over the REST API.

Important: You can continue to use the CMIS REST API in your existing custom widget code.
However, if your custom widget interacts with the IBM Case Manager V5.2 widgets, you must
convert the returned responses to JavaScript model objects.

The examples in this article are based on a custom search widget that was developed for IBM
Case Manger V5.2. For information about this widget, see the developerWorks article Converting a
Custom Search Widget from ICM 5.1.1 to ICM 5.2.

You can download the code for the custom search widget from the following link:
https://www.ibm.com/developerworks/community/groups/service/html/communityview?
communityUuid=e8206aad-10e2-4c49-b00c-
fee572815374#fullpageWidgetId=Wf2c4e43b120c_4ac7_80ae_2695b8e6d46d&file=e3ff1d40-31e0-469a-
9ecf-aa7a03e73a46

2. Making REST Calls in IBM Case Manager V5.2 Custom Widgets

To demonstrate using REST calls in an IBM Case Manager 5.2 widget, we add a REST call to
the existing custom search widget. This call generalizes the widget by replacing the hard-coded list of
caseType properties with a REST call that enumerates the properties.

We make this change in the CustomSearchWidget.js file, which is the main widget JavaScript
file. We will change this part of the CustomSearchWidget.js file later on in section 6 to use Model API.
The following code shows the REST call:
domReady(function(){
 var htmlBuilder = "";
 var ajaxResponse;
 var xhrArgs = {
 url: "../../../CaseManager/CASEREST/v1/casetype/CCDMT_ManageDisputeItemTargetObjectStore=CMTOS",

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=e8206aad-10e2-4c49-b00c-fee572815374#fullpageWidgetId=Wf2c4e43b120c_4ac7_80ae_2695b8e6d46d&file=e3ff1d40-31e0-469a-9ecf-aa7a03e73a46
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=e8206aad-10e2-4c49-b00c-fee572815374#fullpageWidgetId=Wf2c4e43b120c_4ac7_80ae_2695b8e6d46d&file=e3ff1d40-31e0-469a-9ecf-aa7a03e73a46
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=e8206aad-10e2-4c49-b00c-fee572815374#fullpageWidgetId=Wf2c4e43b120c_4ac7_80ae_2695b8e6d46d&file=e3ff1d40-31e0-469a-9ecf-aa7a03e73a46
https://www.ibm.com/developerworks/community/blogs/e8206aad-10e2-4c49-b00c-fee572815374/entry/converting_a_custom_search_widget_from_icm_5_1_1_to_icm_5_2?lang=en
https://www.ibm.com/developerworks/community/blogs/e8206aad-10e2-4c49-b00c-fee572815374/entry/converting_a_custom_search_widget_from_icm_5_1_1_to_icm_5_2?lang=en
https://www.ibm.com/developerworks/community/blogs/e8206aad-10e2-4c49-b00c-fee572815374/entry/mapping_case_rest_api_calls_to_model_api_calls_when_converting_custom_widgets_to_icm_5_2?lang=en
http://pic.dhe.ibm.com/infocenter/p8docs/v5r2m0/topic/com.ibm.developingeuc.doc/doc/JavaScriptdoc/index.html
http://pic.dhe.ibm.com/infocenter/p8docs/v5r2m0/topic/com.ibm.developingeuc.doc/doc/JavaScriptdoc/index.html
http://pic.dhe.ibm.com/infocenter/casemgmt/v5r2m0/topic/com.ibm.casemgmt.development.doc/jsdoc/index.html

 handleAs: "json",no
 load: function(serverResponse)

{
 console.log("success!");
 ajaxResponse = serverResponse;

for (i = 0; i < ajaxResponse.Properties.length; i++)
 {

if(ajaxResponse.Properties[i].SymbolicName.indexOf(“_”) != -1)
{

 if (ajaxResponse.Properties[i].PropertyType == "boolean")
 {
 htmlBuilder += "<h3>" + ajaxResponse.Properties[i].DisplayName +

"(" + ajaxResponse.Properties[i].PropertyType + ")</h3>";
 htmlBuilder += "<form>";
 htmlBuilder += 'true<input type="radio" size="25" id ="' +

ajaxResponse.Properties[i].DisplayName + '-true" value =
"true">
';

 htmlBuilder += 'false<input type="radio" size="25" id ="' +
ajaxResponse.Properties[i].DisplayName + '-false" value =
"false">
';

 htmlBuilder += "</form>";
 }
 else
 {
 htmlBuilder += "<h3>" + ajaxResponse.Properties[i].DisplayName + "(" +

ajaxResponse.Properties[i].PropertyType + ")</h3>"
 htmlBuilder += '<input type="text" size="25" id ="' +

ajaxResponse.Properties[i].DisplayName + '">';
 }

}
 }
 dojo.byId("Wrapper").innerHTML = htmlBuilder;

}
error:function(error){console.log(“error!” + error);}

}

In this code:

1. The green text indicates the URL that is used to call the REST API. In this example, the URL is
making a call to obtain information about the case type CCDMT_ManageDisputeItem located at
the object store CMTOS.

Note that the browser requires you to make AJAX calls only from the domain of origin. Therefore,
if this script resided on ibm.com, it could not make a call to anywhere outside ibm.com.

2. The domReady() function is a Dojo function that ensures that the code inside the function does
not run until the DOM object has been completely loaded.

3. The code writes “success” to the web browser console for debugging purposes. This message is
displayed when the REST call executes successfully.

4. The remaining code enumerates through the REST response to gather the information that is
needed for the custom search widget to work correctly and to build an HTML form based on the
case properties.

5. The first if statement (ajaxResponse.Properties[i].SymbolicName.indexOf(“_”) != -1) filters out
system properties from the array of case properties. System properties (such as the current
solution id) are properties that all cases have, and are not very useful to search on. System
properties use the format “SystemProperty” while case properties use the format
“SOLUTIONPREFIX_PropertyName”. By filtering out properties that do not contain an
underscore, we also filter out all system properties. Note that more specificity might be required
or desired, but for the purposes of this example simply filtering on the presence of the underscore
character is sufficient.

Note that to get the attribute names from the case solution, you must access the objects
differently than from Model API. For example, you use the following call to get the attribute name
from a REST API response:

ajaxResponse.Properties[i].DisplayName

There are other ways to retrieve the case attributes similar to the preceding REST API call. To
use REST API in a custom widget in IBM Case Manager 5.2, you cannot use the REST API to create an
object and then pass the response to a function that expects a model object without doing some post
processing to rename the attributes to match the Model object. One way to create a model object is by
using static methods such as the fromJSON() method that is defined on the odel class. Alternatively
you can create model objects by using the model class constructor and setting properties from the
JSON object on the model object. If available, you can use the fromJSON() method to convert an object
that is returned from a REST call to a Model object.

First, we will look at how we finish up our REST widget. While we have successfully made a
REST call, we still must pass the returned information to the rest of the widget. Most importantly, we
need to build our search query, which involves creating a query to the Content Platform Engine. More
specifics on implmeneting case search can be found in icm.util.SearchPayload in the IBM Case
Manager JavaScript API Reference. We will use the following code to build the query:

for (i = 0; i < ajaxResponse.Properties.length; i++)
{

var temp;
var temp2;
if (ajaxResponse.Properties[i].SymbolicName.indexOf(“_”) != -1)
{

if (ajaxResponse.Properties[i].PropertyType == "boolean")
{
temp = dojo.byId(ajaxResponse.Properties[i].DisplayName + '-true');
temp2 = dojo.byId(ajaxResponse.Properties[i].DisplayName + '-false');

if (temp.checked)
{
params.ceQuery += "t.[" + ajaxResponse.Properties[i].SymbolicName + "] = " +
domAttr.get(temp, "value") + " AND ";
empty = false;
}
else if (temp2.checked)
{
params.ceQuery += "t.[" + ajaxResponse.Properties[i].SymbolicName + "] = " +
domAttr.get(temp2,"value") + " AND ";
empty = false;
}

}
else
{

temp = dojo.byId(ajaxResponse.Properties[i].DisplayName);
if (domAttr.get(temp, "value") !== '')
{

if (ajaxResponse.Properties[i].PropertyType == "integer" ||
ajaxResponse.Properties[i].PropertyType == "float" ||
ajaxResponse.Properties[i].PropertyType == "id")
{

params.ceQuery += "t.[" +
ajaxResponse.Properties[i].SymbolicName + "]
= " + domAttr.get(temp, "value") + " AND ";
empty = false;

}
else if (ajaxResponse.Properties[i].PropertyType ==
"string")
{

params.ceQuery += "t.[" +
ajaxResponse.Properties[i].SymbolicName + "]
LIKE '%" + domAttr.get(temp, "value") + "%'

AND ";
empty = false;

}
else if (ajaxResponse.Properties[i].PropertyType =
"datetime")
{

params.ceQuery += "t.[" +
ajaxResponse.Properties[i].SymbolicName + "]
>= TIMESTAMP '" + domAttr.get(temp, "value")
+ "T00:00:00.000' AND " +
"t.[" + ajaxResponse.Properties[i
].SymbolicName + "] <= TIMESTAMP '" +
domAttr.get(temp, "value") + "T23:59:59.000'
AND ";
empty = false;

}
}

}
}

}

This code contains several nested if statements. The first if statement filters out system
properties from case properties (case property names are of the form solutionPrefix_name). The next if
statements test for the property type. Because Boolean properties are represented by two HTML
elements (a check box for false, and a checkbox for true), we use a separate statement to test for each
value. For other property types, we need only a single test. Then, since the rest of the case properties
use a text box in our HTML form, we first check to see if anything has been entered. If the field is not
empty, we check the type and build our query appropriately.

In the original code, we used the CEQuery function to construct and send our payload over to
execute the custom search. Because we are stripping the properties we want from the REST call, we
still construct our search using the CEQuery function and send our search payload the same way.
There is no difference in the way the custom search widget calls the search in V5.1.1 and V5.2.

3. Using the JavaScript API Reference Documentation

The following table below shows the organization of the IBM Case Manager JavaScript classes
and packages. You can use this information to help when you look up the functionalities to add.

The JavaScript API Reference document shows you the actions and functions that you can use
within your custom widgets.

In our scenario, we walk through how to use this information.

To get the properties for the case solution, we call the
icm.model.Solution.retrieveAttributeDefinitions method. To get information about this method, we
scroll the navigation pane in the JavaScript API Reference to find the icm.model.Solution class:

Next, we find the retrieveAttributeDefinitions function that allows us to retrieve the attributes.
This function, which will return the information needed for the custom search widget, requires a
callback function:

Next, we want to find a Model API function to do the case search in the custom search widget.
We look for a class called icm.util.SearchPayload. This class enables us to create the search payload
that is used between the IBM Case Manager Search widget and the Case List widget. By following the
details in the functions getSearchPayload() and setModel(model), we are able to set the CEQuery
variable and set the SearchPayload to broadcast to the CaseList widget.

4. Making Model API calls in IBM Case Manager 5.2

Now, we can place the custom search widget in any solution and use the widget to find
attributes and make them searchable. We now be replaces the code that we inserted in sections 2 and 3
with the following code. The green colored text indicates the Model API call that we are using to
retrieve the solution property attributes.

var modelResponse
ContentPaneHtml = "";
widget.solution.retrieveAttributeDefinitions(function(theResponse){

modelResponse = theResponse
 for (i=0; i< theResponse.length; i++)
 {
 if (modelResponse[i].id.indexOf("_") != -1)

//checks if item is not a system attribute. System attributes do not have the
"SOLUTIONPREFIX_NAME" naming convention

 {
 if (modelResponse[i].dataType == "xs:boolean")

{
ContentPaneHtml += "<h3>" + modelResponse[i].name + "(" + modelResponse[i
].dataType + ")</h3>";
ContentPaneHtml += "<form>";
ContentPaneHtml += 'true<input type="radio" size="25" id ="' +
modelResponse[i].name + '-true" value = "true">
';
ContentPaneHtml += 'false<input type="radio" size="25" id ="' +
modelResponse[i].name + '-false" value = "false">
';
ContentPaneHtml += "</form>";

}

else
{

ContentPaneHtml += "<h3>" + modelResponse[i].name + "(" + modelResponse[i
].dataType + ")</h3>"
ContentPaneHtml += '<input type="text" size="25" id ="' + modelResponse[i
].name + '">';

}
 }
 }
 dojo.byId("Wrapper").innerHTML = ContentPaneHtml;
});

Note that we no longer have to execute an AJAX call. Instead, we access the solution in which
the custom search widget is used and enumerate the case type properties. In addition, we do not need
to convert the object to a Model Object to pass it to an IBM Case Manager widget that expects a Model
object.

When we add the custom search widget to a copied version of Credit Card Dispute
Management, we can see these properties are dynamically populated in the widget.

5. Passing the Model Object to other IBM Case Manager Widgets

In IBM Case Manager, widgets often communicate with other widgets by sending or
broadcasting events. While this mechanism is essentially the same in IBM Case Manager V5.2 as in
earlier releases, the content of the payloads is dramatically different. Therefore, any existing code that
sends or receives events in interactions with IBM Case Manager widgets requires modification. In
addition, the package name of the events also changes from “com.ibm.ecmwidgets.acm” to “icm”. For
example, the custom search code uses a broadcast to send the desired search to the Case List widget
for processing. The API call to effect the broadcast changes, the event name changes its prefix, and the
type of the payload is now an object that references a Model object:

widget.onBroadcastEvent("icm.SearchCases", payload);

We must ensure that we pass the correct Model object that the IBM Case Manager V5.2 Case
List widget expects with this broadcast event to avoid a runtime error.

6. Advantages of Model API over Rest API in IBM Case Manager V5.2

Using the Model API instead of the REST API provides the following advantages:

• You can easily extend IBM Content Navigator and IBM Case Manager functionality when you
develop custom widgets.

• The Model API clearly separates business logic from the user interface layer.
• Model objects that containing business or server side objects can be shared across widgets,

including custom widgets.
• The CMIS REST API is still available in the IBM Content Navigator API.
• The JavaScript toolkit provides a more standard, object-oriented programming model.

	1. Overview
	2. Making REST Calls in IBM Case Manager V5.2 Custom Widgets
	3. Using the JavaScript API Reference Documentation
	4. Making Model API calls in IBM Case Manager 5.2
	5. Passing the Model Object to other IBM Case Manager Widgets
	6. Advantages of Model API over Rest API in IBM Case Manager V5.2

